Parallelizing simulated annealing algorithms based on high-performance computer
نویسندگان
چکیده
We implemented five conversions of simulated annealing (SA) algorithm from sequential-to-parallel forms on high-performance computers and applied them to a set of standard function optimization problems in order to test their performances. According to the experimental results, we eventually found that the traditional approach to parallelizing simulated annealing, namely, parallelizing moves in sequential SA, difficultly handled very difficult problem instances. Divide-and-conquer decomposition strategy used in a search space sometimes might find the global optimum function value, but it frequently resulted in great time cost if the random search space was considerably expanded. The most effective way we found in identifying the global optimum solution is to introduce genetic algorithm (GA) and build a highly hybrid GA+SA algorithm. In this approach, GA has been applied to each cooling temperature stage. Additionally, the performance analyses of the best algorithm among the five implemented algorithms have been done on the IBM Beowulf PCs Cluster and some comparisons have been made with some recent global optimization algorithms in terms of the number of functional evaluations needed to obtain a global minimum, success rate and solution quality.
منابع مشابه
Lessons Learned from Prototyping Parallel Computer Architectures for AI Algorithms
Since many years algorithms from the eld of arti cial intelligence (AI) have been targeted for parallelization, i.e., partitioning the search problem and distributing the subproblems among multiple processing nodes. This paper reports on our experience in parallelizing and distributing AI algorithms, i.e., the design and prototype implementation of parallel computer architectures for AI algorit...
متن کاملComparison of Simulated Annealing and Electromagnetic Algorithms for Solution of Extended Portfolio Model
This paper presents two meta-heuristic algorithms to solve an extended portfolio selection model. The extended model is based on the Markowitz's Model, aiming to minimize investment risk in a specified level of return. In order to get the Markowitz model close to the real conditions, different constraints were embedded on the model which resulted in a discrete and non-convex solution space. ...
متن کاملA New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...
متن کاملFinding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...
متن کاملThe project portfolio selection and scheduling problem: mathematical model and algorithms
This paper investigates the problem of selecting and scheduling a set of projects among available projects. Each project consists of several tasks and to perform each one some resource is required. The objective is to maximize total benefit. The paper constructs a mathematical formulation in form of mixed integer linear programming model. Three effective metaheuristics in form of the imperialis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 39 شماره
صفحات -
تاریخ انتشار 2007